Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Search ACU Repository
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Српски
  • Yкраї́нська
  • Log In
    New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ojo, O.S."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Hybrid Design using Counter Propagation Neural Network-Genetic Algorithm Model for the Anomaly Detection in Online Transaction
    (International Journal of Advances in Scientific Research and Engineering (ijasre), 2019-09-20) Amusan, D.G.; Olabode, A.O.; Ojo, O.S.; Folowosele, A.O.; Oyediran, M.O.
    In e-commerce, credit card fraud is an evolving challenge. The increase in the number of credit card transactions provides more opportunity for fraudsters to steal credit card numbers and execute fraud. Fraud detection is a continuously evolving discipline to tackle ever changing tactics to commit fraud. Existing fraud detection systems have not been so much efficient to reduce fraud transaction rate. Improvement in fraud detection practices has become essential to maintain existence of payment system. This research designed hybrid of Counter Propagation Neural Network and genetic algorithm (CPNN-GA) for the detection of anomaly in any online transactions.

© 2024 | Ajayi Crowther University

Installed and branded by Libtech Resurce and Services

Support: [email protected]