Browsing by Author "Olusanya, O. O."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Design and implementation of a prototype active infrared sensor controlled automatic sliding door for mitigation of coronavirus disease 2019 (COVID-19)(Journal of Electrical, Control and Telecommunication Research, 2020-04-01) Amole, A. O.; Oyediran, M. O.; Olusanya, O. O.; Elegbede, W. A.; Olusesi, A. T.; Adeleye, A. O.The door is an essential part of any structure that provides access and security of lives and properties. The manual operation of a door could be cumbersome and laborious when the traffic volume is high. Also, it has been observed that doors could serve as a medium of spreading the deadly coronavirus disease 2019 (COVID-19) infection. Therefore, a prototype automatic sliding door that plays a crucial role in curbing the spread of this infectious diseases has been designed and implemented in this paper. The design of the prototype sliding door is in two parts namely; the structural part and the automation part. The structural design of the door was achieved using the Microsoft Visio 2016 while the design of the automation system was achieved using express printed circuit board. The implementation of the structural part was achieved using 1 inch particle board while the implementation of the automation system was based on the components like the active infrared sensor, resistors (10 kΩ), capacitor (1000 µF), transistors (TIP41 Q8, BC548 Q7), LED indicators, press button switch, pulley system, drive belt, stepper motor (IP65), and ATMEGA 8 microcontroller. The result of the tests carried out on the door showed that the prototype automatic sliding door was characterized by average opening time, closing time, delay time, and optimal sensing range of 3.10 s, 3.05 s, 5.72 s, and 23.5 cm, respectively. It can therefore be concluded from this work that the prototype automatic sliding door is effective in overriding the manual operation of the door.Item Development of a Model for International Traveler’s Check-In Process Using Arena Software Tool(Scientific Research Publishing, 2020-11-30) Olusanya, O. O.; Obetta, J. L.; Oyediram, M. O.; Elegbede, A. W.The increasing demand for airline services amidst limited resources results in passenger dissatisfaction and dwindling revenue for airports and airlines. The dynamics of service demand and resource supply results in check-in issues for the stakeholders in the commercial aviation industry. This has the effect of impacting negatively on service performance, cost of operations, customer satisfaction, and overall throughput. Hence, this paper modelled the travelers’ check-in process at the “D Wing” of the Departure Section of Murtala Mu hammed International Airport (MMIA), Ikeja, using Arena Software Tool. The work was carried out by determining the parameters of the queues at designated service points in the check-in process. The primary data required to develop the model were acquired by direct observation of passenger flow and oral interview. Thus, the average check-in time was determined. Thereafter, a model of the international check-in system of the MMIA was developed using Arena software in combination with Microsoft Office tools. The data collected were therefore inputted into the model and simulated; the real result was compared with the simulation result of 133 completions and there was no significant difference. The result showed that the model is a re presentation of the real system under study. Further work will be tailored to wards simulation(i.e. the model will be subjected to experimentation in order to have different scenario).